Some General Comments:

Cavity Problem 1 (6 points)

Consider a pillbox cavity designed for frequency \(\omega\) and particle velocity \(\beta\) with peak surface electric field of \(E_0\).

  1. Calculate the radius \(R\).
    \[ \omega_0 = \frac{2.405c}{R} \longrightarrow R = \frac{2.405c}{\omega_0} \]
  2. What are the Electric fields on the beam axis?
    \[ E_z(\rho,\phi,z,t) = E_0\;J_0\left(\frac{2.405c}{R}\right)e^{\pm i\omega t} \\ E_z(\rho=0) = E_0e^{\pm i\omega t} \]
  3. What’s the maximum voltage this cavity can achieve?
    \[ at~\rho = 0, ~~~ V_0 = \int_0^L |E_z(z)| dz = E_0L \]
  4. What’s the maximum voltage a beam could get?
    • Assume constant \(\beta\); also, symmetric integrals are your friend

\[ V_{acc} = \int_0^L E_0 e^{i\omega t}dz = \int_0^L E_0 e^{i\omega z/\beta c} dz \\ = \frac{\beta c}{i\omega}\int_{-L/2}^{L/2} E_0 e^{i\omega z/\beta c} (\frac{i\omega}{\beta c}dz) = E_0\frac{\beta c}{i\omega}\left( e^{i\omega L/2\beta c} - e^{-i\omega z/2\beta c} \right) \\ = 2E_0 \frac{\beta c}{\omega}\sin\frac{\omega L}{2\beta c} \]

  1. What \(L\) optimizes this beam voltage?

\[ \frac{dV_{acc}}{dL} = 2E_0 \frac{\beta c}{\omega}\cos\frac{\omega L}{2\beta c} \cdot \frac{\omega }{2\beta c} = 0 \longrightarrow \cos(~)=0 \longrightarrow \frac{\omega L}{2\beta c} = \pi/2\\ L = \frac{\pi\beta c}{\omega} = \frac{\beta}{2}\frac{2\pi c}{\omega} = \frac{\beta\lambda}{2}. ~~~~~~~~~ (\lambda f = c,~~ \lambda\omega = 2\pi c) \]

  1. What’s the ratio of Maximum Beam Voltage/Maximum Cavity Voltage?

\[ \frac{V_{acc}}{V_0} \equiv T = 2E_0 \frac{\beta c}{\omega}\sin\frac{\omega L}{2\beta c} \cdot \frac{1}{E_0 L} = \frac{2\beta c}{\omega L}\sin \frac{\omega L}{2\beta c} \\ @~ L=\beta\lambda/2 \longrightarrow T = 2/\pi = 0.637 \]

Cavity Problem 2 (4 points)

Now consider an equivalent of a pillbox cavity made with rectangular waveguide with sides \(a\), \(b\), and \(c\).

  1. Draw the fields of the accelerating mode; it should look pretty similar to a pillbox cavity.
  2. What mathematical form do these fields take?
    Guess: \[ E_z = E_0\cos(k_x x)\cos(k_y y) e^{i\omega t} \] Boundary Conditions: \[ E_z = 0 ~ @ ~ x = \pm a/2, ~ y = \pm b/2 \\ \cos(k_x a/2) = 0 \longrightarrow k_x = \pi/a \\ {\rm and~~} k_y = \pi/b \] Hence, \(\vec{k} = (\pi/a)\hat{x} + (\pi/b)\hat{y}\) and \[ \vec{E} = \hat{z}E_0\cos(\pi x/a)\cos(\pi y/b)e^{i\omega t}\\ \vec{B} = \frac{i}{\omega}\vec{k}\times\vec{E} \]
  3. What’s the frequency of this cavity? Hint: Don’t overcomplicate it.

\[ c^2\left[(\pi/a)^2 + (\pi/b)^2 \right] = \omega^2 \\ \rightarrow ~~~\omega = \pi c\sqrt{1/a^2 + 1/b^2} \]

Cavity Problem 3 (12 points)

For a half-wave resonator:

  1. Calculate the Geometry Factor, given \(f\), \(a\), and \(b\).
    First: \[ G = \frac{\omega U}{P_d/R_s} \\ U = \int_V\frac12\frac1\mu_0|B|^2dV \\ \vec{B} = \frac{E_0a}{c\rho}\sin(\pi z/L)e^{i\omega t}\hat{\phi} \\ U = \frac{1}{2\mu_0}\frac{E_0a^2}{c^2}\int_z^b\rho d\rho\int_0^{2\pi} d\phi \int_{-L/2}^{L/2} dz \;\frac{\sin^2(\pi z/L)}{\rho^2} \\ \rightarrow U = \frac{\epsilon_0\pi E_0^2 a^2\lambda}{4}\ln(b/a) \\ \] Secondly,

\[ P_D/R_s = \frac12\int_S|\vec{H}|^2 dA \\ = 2\cdot\frac12\mu_0\int_0^{2\pi}d\phi\int_a^b\rho d\rho B^2|_{z=L/2} ~~({\rm 2~end~walls}) \\ + \frac{1}{2\mu_0}\int_0^{2\pi}d\phi\int_{-L/2}^{L/2}dz \rho B^2 |_{\rho=b} ~~({\rm Outer~Conductor}) \\ + \frac{1}{2\mu_0}\int_0^{2\pi}d\phi\int_{-L/2}^{L/2}dz \rho B^2 |_{\rho=1} ~~({\rm Inner~Conductor}) \\ \rightarrow P_D/R_s= \frac{\pi E_0^2a^2\epsilon_0}{\mu_0}\left[ \frac\lambda4(1/a+1/b)+2\ln(b/a) \right] \]

So, finally,

\[ G = \frac{\omega U}{P_d/R_s} = \frac{\pi c\mu_0\ln(b/a)}{\left[ \frac\lambda2(1/a+1/b)+4\ln(b/a) \right]} \]

  1. Calculate \(R/Q\) in terms of the \(TTF\) (transit time factor).

\[ R/Q = \frac{(TTF)^2 8\ln(b/a)}{\pi^2\epsilon_0 c} \approx TTF\cdot\ln(b/a)\cdot 300[\Omega] \]

  1. (BONUS) Show that \(\frac{\beta\lambda}{2} = (b+a)\).
  1. Why does this make sense?

Gap-to-gap = \((a+b)/2~\cdot~2\) should equal \(\beta\lambda/2\) to get synchronization between gaps.

  1. Not trivial! Integral of \(sin(x)/x\) is not closed; either be more clever or demonstrate numerically?
  1. Assuming c above is proven, how would you go about optimizing \(b-a\)?

\(G\) can be optimized for \((b-a)/(b+a)\), but \(R/Q\) always pushses toward larger gap.

\[ \frac{\partial}{\partial[(b-a)(b+a)]}\left( \frac R Q \right) = 0 \] gives “an” answer, but peak surface fields are also important.


  1. Northern Illinois University and Fermi National Accelerator Laboratory

LS0tCnRpdGxlOiAiSG9tZXdvcmsgNSBEaXNjdXNzaW9uIgphdXRob3I6IE1pa2UgU3lwaGVyc15bTm9ydGhlcm4gSWxsaW5vaXMgVW5pdmVyc2l0eSBhbmQgRmVybWkgTmF0aW9uYWwgQWNjZWxlcmF0b3IKICBMYWJvcmF0b3J5XQpkYXRlOiAnbGFzdCB1cGRhdGU6IGByIGZvcm1hdCgoU3lzLkRhdGUoKSksICIlZCAlYiAlWSIpYCcKb3V0cHV0OiAgaHRtbF9ub3RlYm9vawotLS0KCioqU29tZSBHZW5lcmFsIENvbW1lbnRzOioqCgotIGdyYWRlOiAgMjIgcG9zc2libGUgIAogICAgICArIHB0cyBwZXIgcHJvYmxlbSBhcyBpbmRpY2F0ZWQgIAogICAgICArIGF2ZSBzY29yZSAoYXMtaXMpOiAgMTUvMjIgICh3aWxsIGJlIHJlLXNjYWxlZCkKCgoqKkNhdml0eSBQcm9ibGVtIDEqKiAgKDYgcG9pbnRzKQoKQ29uc2lkZXIgYSBwaWxsYm94IGNhdml0eSBkZXNpZ25lZCBmb3IgZnJlcXVlbmN5ICRcb21lZ2EkIGFuZCBwYXJ0aWNsZSB2ZWxvY2l0eSAkXGJldGEkIHdpdGggcGVhayBzdXJmYWNlIGVsZWN0cmljIGZpZWxkIG9mICRFXzAkLgoKYS4gQ2FsY3VsYXRlIHRoZSByYWRpdXMgJFIkLiAgCiQkClxvbWVnYV8wID0gXGZyYWN7Mi40MDVjfXtSfSBcbG9uZ3JpZ2h0YXJyb3cgUiA9IFxmcmFjezIuNDA1Y317XG9tZWdhXzB9CiQkCmIuIFdoYXQgYXJlIHRoZSBFbGVjdHJpYyBmaWVsZHMgb24gdGhlIGJlYW0gYXhpcz8gIAokJApFX3ooXHJobyxccGhpLHosdCkgPSBFXzBcO0pfMFxsZWZ0KFxmcmFjezIuNDA1Y317Un1ccmlnaHQpZV57XHBtIGlcb21lZ2EgdH0gXFwKRV96KFxyaG89MCkgPSBFXzBlXntccG0gaVxvbWVnYSB0fQokJApjLiBXaGF04oCZcyB0aGUgbWF4aW11bSB2b2x0YWdlIHRoaXMgY2F2aXR5IGNhbiBhY2hpZXZlPyAgCiQkCmF0flxyaG8gPSAwLCB+fn4gVl8wID0gXGludF8wXkwgfEVfeih6KXwgZHogPSBFXzBMCiQkCmQuIFdoYXTigJlzIHRoZSBtYXhpbXVtIHZvbHRhZ2UgYSBiZWFtIGNvdWxkIGdldD8gIAogICAgICArIEFzc3VtZSBjb25zdGFudCAkXGJldGEkOyBhbHNvLCBzeW1tZXRyaWMgaW50ZWdyYWxzIGFyZSB5b3VyIGZyaWVuZAoKJCQKVl97YWNjfSA9IFxpbnRfMF5MIEVfMCBlXntpXG9tZWdhIHR9ZHogPSBcaW50XzBeTCBFXzAgZV57aVxvbWVnYSB6L1xiZXRhIGN9IGR6IFxcCiAgPSBcZnJhY3tcYmV0YSBjfXtpXG9tZWdhfVxpbnRfey1MLzJ9XntMLzJ9IEVfMCAgZV57aVxvbWVnYSB6L1xiZXRhIGN9IChcZnJhY3tpXG9tZWdhfXtcYmV0YSBjfWR6KSA9IEVfMFxmcmFje1xiZXRhIGN9e2lcb21lZ2F9XGxlZnQoIGVee2lcb21lZ2EgTC8yXGJldGEgY30gLSBlXnstaVxvbWVnYSB6LzJcYmV0YSBjfSBccmlnaHQpIFxcCiAgPSAyRV8wIFxmcmFje1xiZXRhIGN9e1xvbWVnYX1cc2luXGZyYWN7XG9tZWdhIEx9ezJcYmV0YSBjfQokJAoKZS4gV2hhdCAkTCQgb3B0aW1pemVzIHRoaXMgYmVhbSB2b2x0YWdlPwoKJCQKXGZyYWN7ZFZfe2FjY319e2RMfSA9IDJFXzAgXGZyYWN7XGJldGEgY317XG9tZWdhfVxjb3NcZnJhY3tcb21lZ2EgTH17MlxiZXRhIGN9IFxjZG90IFxmcmFje1xvbWVnYSB9ezJcYmV0YSBjfSA9IDAgXGxvbmdyaWdodGFycm93IFxjb3Mofik9MCBcbG9uZ3JpZ2h0YXJyb3cgXGZyYWN7XG9tZWdhIEx9ezJcYmV0YSBjfSA9IFxwaS8yXFwKTCA9ICBcZnJhY3tccGlcYmV0YSBjfXtcb21lZ2F9ID0gXGZyYWN7XGJldGF9ezJ9XGZyYWN7MlxwaSBjfXtcb21lZ2F9ID0gXGZyYWN7XGJldGFcbGFtYmRhfXsyfS4gfn5+fn5+fn5+IChcbGFtYmRhIGYgPSBjLH5+IFxsYW1iZGFcb21lZ2EgPSAyXHBpIGMpCiQkCgpmLiBXaGF04oCZcyB0aGUgcmF0aW8gb2YgTWF4aW11bSBCZWFtIFZvbHRhZ2UvTWF4aW11bSBDYXZpdHkgVm9sdGFnZT8gIAoKJCQKXGZyYWN7Vl97YWNjfX17Vl8wfSBcZXF1aXYgVCA9IDJFXzAgXGZyYWN7XGJldGEgY317XG9tZWdhfVxzaW5cZnJhY3tcb21lZ2EgTH17MlxiZXRhIGN9IFxjZG90IFxmcmFjezF9e0VfMCBMfSA9IFxmcmFjezJcYmV0YSBjfXtcb21lZ2EgTH1cc2luIFxmcmFje1xvbWVnYSBMfXsyXGJldGEgY30gXFwKQH4gTD1cYmV0YVxsYW1iZGEvMiBcbG9uZ3JpZ2h0YXJyb3cgVCA9IDIvXHBpID0gYHIgcm91bmQoMi9waSwzKWAKJCQKCioqQ2F2aXR5IFByb2JsZW0gMioqICAoNCBwb2ludHMpCgpOb3cgY29uc2lkZXIgYW4gZXF1aXZhbGVudCBvZiBhIHBpbGxib3ggY2F2aXR5IG1hZGUgd2l0aCByZWN0YW5ndWxhciB3YXZlZ3VpZGUgd2l0aCBzaWRlcyAkYSQsICRiJCwgYW5kICRjJC4KCmEuIERyYXcgdGhlIGZpZWxkcyBvZiB0aGUgYWNjZWxlcmF0aW5nIG1vZGU7IGl0IHNob3VsZCBsb29rIHByZXR0eSBzaW1pbGFyIHRvIGEgcGlsbGJveCBjYXZpdHkuICAKYi4gV2hhdCBtYXRoZW1hdGljYWwgZm9ybSBkbyB0aGVzZSBmaWVsZHMgdGFrZT8gIApHdWVzczoKJCQKRV96ID0gRV8wXGNvcyhrX3ggeClcY29zKGtfeSB5KSBlXntpXG9tZWdhIHR9CiQkCkJvdW5kYXJ5IENvbmRpdGlvbnM6CiQkCkVfeiA9IDAgfiBAIH4geCA9IFxwbSBhLzIsIH4geSA9IFxwbSBiLzIgXFwKXGNvcyhrX3ggYS8yKSA9IDAgXGxvbmdyaWdodGFycm93IGtfeCA9IFxwaS9hIFxcCntccm0gYW5kfn59IGtfeSA9IFxwaS9iCiQkCkhlbmNlLCAkXHZlY3trfSA9IChccGkvYSlcaGF0e3h9ICsgKFxwaS9iKVxoYXR7eX0kIGFuZAokJApcdmVje0V9ID0gXGhhdHt6fUVfMFxjb3MoXHBpIHgvYSlcY29zKFxwaSB5L2IpZV57aVxvbWVnYSB0fVxcClx2ZWN7Qn0gPSBcZnJhY3tpfXtcb21lZ2F9XHZlY3trfVx0aW1lc1x2ZWN7RX0KJCQKYy4gV2hhdOKAmXMgdGhlIGZyZXF1ZW5jeSBvZiB0aGlzIGNhdml0eT8gSGludDogRG9u4oCZdCBvdmVyY29tcGxpY2F0ZSBpdC4gIAoKJCQKY14yXGxlZnRbKFxwaS9hKV4yICsgKFxwaS9iKV4yICBccmlnaHRdID0gXG9tZWdhXjIgXFwKXHJpZ2h0YXJyb3cgfn5+XG9tZWdhID0gXHBpIGNcc3FydHsxL2FeMiArIDEvYl4yfQokJAoKKipDYXZpdHkgUHJvYmxlbSAzKiogICgxMiBwb2ludHMpCgpGb3IgYSBoYWxmLXdhdmUgcmVzb25hdG9yOiAgCgphLiBDYWxjdWxhdGUgdGhlIEdlb21ldHJ5IEZhY3RvciwgZ2l2ZW4gJGYkLCAkYSQsIGFuZCAkYiQuICAKRmlyc3Q6CiQkCkcgPSBcZnJhY3tcb21lZ2EgVX17UF9kL1Jfc30gXFwKVSA9IFxpbnRfVlxmcmFjMTJcZnJhYzFcbXVfMHxCfF4yZFYgXFwKXHZlY3tCfSA9IFxmcmFje0VfMGF9e2NccmhvfVxzaW4oXHBpIHovTCllXntpXG9tZWdhIHR9XGhhdHtccGhpfSBcXApVID0gXGZyYWN7MX17MlxtdV8wfVxmcmFje0VfMGFeMn17Y14yfVxpbnRfel5iXHJobyBkXHJob1xpbnRfMF57MlxwaX0gZFxwaGkgXGludF97LUwvMn1ee0wvMn0gZHogXDtcZnJhY3tcc2luXjIoXHBpIHovTCl9e1xyaG9eMn0gIFxcClxyaWdodGFycm93IFUgPSBcZnJhY3tcZXBzaWxvbl8wXHBpIEVfMF4yIGFeMlxsYW1iZGF9ezR9XGxuKGIvYSkgXFwKJCQKU2Vjb25kbHksCgokJApQX0QvUl9zID0gXGZyYWMxMlxpbnRfU3xcdmVje0h9fF4yIGRBIFxcCj0gMlxjZG90XGZyYWMxMlxtdV8wXGludF8wXnsyXHBpfWRccGhpXGludF9hXmJccmhvIGRccmhvIEJeMnxfe3o9TC8yfSB+fih7XHJtIDJ+ZW5kfndhbGxzfSkgXFwKKyBcZnJhY3sxfXsyXG11XzB9XGludF8wXnsyXHBpfWRccGhpXGludF97LUwvMn1ee0wvMn1keiBccmhvIEJeMiB8X3tccmhvPWJ9IH5+KHtccm0gT3V0ZXJ+Q29uZHVjdG9yfSkgXFwKKyBcZnJhY3sxfXsyXG11XzB9XGludF8wXnsyXHBpfWRccGhpXGludF97LUwvMn1ee0wvMn1keiBccmhvIEJeMiB8X3tccmhvPTF9IH5+KHtccm0gSW5uZXJ+Q29uZHVjdG9yfSkgXFwKXHJpZ2h0YXJyb3cgUF9EL1Jfcz0gXGZyYWN7XHBpIEVfMF4yYV4yXGVwc2lsb25fMH17XG11XzB9XGxlZnRbIFxmcmFjXGxhbWJkYTQoMS9hKzEvYikrMlxsbihiL2EpIFxyaWdodF0KJCQKClNvLCBmaW5hbGx5LAoKJCQKRyA9IFxmcmFje1xvbWVnYSBVfXtQX2QvUl9zfSA9IFxmcmFje1xwaSBjXG11XzBcbG4oYi9hKX17XGxlZnRbIFxmcmFjXGxhbWJkYTIoMS9hKzEvYikrNFxsbihiL2EpIFxyaWdodF19CiQkCgpiLiBDYWxjdWxhdGUgJFIvUSQgaW4gdGVybXMgb2YgdGhlICRUVEYkICh0cmFuc2l0IHRpbWUgZmFjdG9yKS4gIAoKJCQKUi9RID0gXGZyYWN7KFRURileMiA4XGxuKGIvYSl9e1xwaV4yXGVwc2lsb25fMCBjfSBcYXBwcm94IFRURlxjZG90XGxuKGIvYSlcY2RvdCAzMDBbXE9tZWdhXQokJAoKYy4gKCoqQk9OVVMqKikgU2hvdyB0aGF0ICRcZnJhY3tcYmV0YVxsYW1iZGF9ezJ9ID0gKGIrYSkkLiAgCgogIDEuIFdoeSBkb2VzIHRoaXMgbWFrZSBzZW5zZT8gIAoKR2FwLXRvLWdhcCA9ICQoYStiKS8yflxjZG90fjIkIHNob3VsZCBlcXVhbCAkXGJldGFcbGFtYmRhLzIkIHRvIGdldCBzeW5jaHJvbml6YXRpb24gYmV0d2VlbiBnYXBzLgogICAgICAKICAyLiBOb3QgdHJpdmlhbCEgSW50ZWdyYWwgb2YgJHNpbih4KS94JCBpcyBub3QgY2xvc2VkOyBlaXRoZXIgYmUgbW9yZSBjbGV2ZXIgb3IgZGVtb25zdHJhdGUgbnVtZXJpY2FsbHk/ICAKICAgICAgCgpkLiAgQXNzdW1pbmcgYGNgIGFib3ZlIGlzIHByb3ZlbiwgaG93IHdvdWxkIHlvdSBnbyBhYm91dCBvcHRpbWl6aW5nICRiLWEkPyAgCgokRyQgY2FuIGJlIG9wdGltaXplZCBmb3IgJChiLWEpLyhiK2EpJCwgYnV0ICRSL1EkIGFsd2F5cyBwdXNoc2VzIHRvd2FyZCBsYXJnZXIgZ2FwLgoKJCQKXGZyYWN7XHBhcnRpYWx9e1xwYXJ0aWFsWyhiLWEpKGIrYSldfVxsZWZ0KCBcZnJhYyBSIFEgXHJpZ2h0KSA9IDAKJCQKZ2l2ZXMgImFuIiBhbnN3ZXIsIGJ1dCBwZWFrIHN1cmZhY2UgZmllbGRzIGFyZSBhbHNvIGltcG9ydGFudC4KCgoKCg==