Assignment: HW2 [50 points]

Assigned: 2016/09/13 Due: 2016/09/22

P2.1 [1+3+3+3+2=12 points]

Let the motion of a point mass be governed by the law

$$\ddot{\mathbf{r}} = \dot{\mathbf{r}} \times \mathbf{a}, \quad \mathbf{a} = \text{const.}$$
 (1)

- (a) Show that $\dot{\mathbf{r}} \cdot \mathbf{a}$ is constant in time.
- (b) Reduce Eq. 1 to an inhomogeneous differential equation of the form $\ddot{\mathbf{r}} + \omega^2 \mathbf{r} = \mathbf{f}(t)$.
- (c) Solve the above equation by using a particular function of the form $\mathbf{r}_p = \mathbf{c}t + \mathbf{d}$.
- (d) Express the constants of integration in terms of the initial values $\mathbf{r}(0)$ and $\dot{\mathbf{r}}(0)$.
- (e) Describe the curve $\mathbf{r}(t) = \mathbf{r}_g(t) + \mathbf{r}_p(t)$, where $\mathbf{r}_g(t)$ is the solution of the homogeneous equation $\ddot{\mathbf{r}} + \omega^2 \mathbf{r} = 0$.

P2.2 [2+5=7 points]

Use variational calculus to find

- (a) The shortest connection between two points (x_1, y_1) and (x_2, y_2) on the 2-dimensional Euclidean plane.
- (b) The shape of a line of uniform mass density supported between (x_1, y_1) and (x_2, y_2) in a uniform gravitational field $\mathbf{g} = g\hat{\mathbf{e}}_y$.

P2.3 [2+3=5 points]

If a conservative force field in 3-dimensional space is axially symmetric, and we choose the z axis of a cylindrical coordinate system $\{r, \phi, z\}$ along the axis of symmetry, then show that

- (a) The corresponding potential has the form U = U(r, z),
- (b) The force always lies in a plane containing the z axis.

P2.4 [3+4+3+5=15 points]

A bead of mass m slides without friction in a uniform gravitational field of acceleration ${\bf g}$ on a vertical circular hoop of radius R. The hoop is constrained to rotate at a fixed angular velocity Ω about its vertical diameter. Take the center of the hoop as the pole (origin) of a spherical polar coordinate system in which ${\bf r}=\{r,\theta,\phi\}$ represents the radius vector of the bead, with $\theta=0$ along the direction of gravity.

- (a) Write down the Lagrangian $L(\theta, \dot{\theta})$.
- (b) Find how the equilibrium values of θ depend on Ω . Which are stable and which are unstable?
- (c) Find the frequencies of small vibrations about the stable equilibrium positions (hint: use the first term in a Taylor series expansion). What happens when $\Omega = \sqrt{\frac{g}{R}}$?

(d) Is
$$H \equiv \dot{\theta} \frac{\partial L}{\partial \dot{\theta}} - L \eqno(2)$$

conserved? Evaluate H, compare it to the energy $E \equiv T + V$, and comment on the result.

P2.5 [3+6+2=11 points]

The Lagrangian for a particle of mass m and electric charge e moving in the xy plane is given by

$$L = \frac{m}{2}(\dot{x}^2 + \dot{y}^2) + eEy - \frac{eB}{c}y\dot{x}.$$

This describes the motion of the particle in a uniform electric field E in the y direction and a uniform magnetic field B in the z direction. c is the speed of light.

- (a) Write down the Euler-Lagrange equations.
- (b) Find the Hamiltonian. Simplify the expression (eliminating \dot{x} by making use of a first integral of motion). What can you say about the general allowed motions in y(t)?
- (c) At t = 0, x = y = 0. What critical value v_c must $\dot{x}(0)$ take in order for the particle to go in a uniform motion? What is the corresponding value of \dot{y} ? (You can either make use of the results in part (a) or that in part (b).)