Assignment: HW2 [50 points]

Assigned: 2016/09/13
Due: 2016/09/22

P2.1 $[1+3+3+3+2=12$ points $]$
Let the motion of a point mass be governed by the law

$$
\begin{equation*}
\ddot{\mathbf{r}}=\dot{\mathbf{r}} \times \mathbf{a}, \quad \mathbf{a}=\text { const. } \tag{1}
\end{equation*}
$$

(a) Show that $\dot{\mathbf{r}} \cdot \mathbf{a}$ is constant in time.
(b) Reduce Eq. 1 to an inhomogeneous differential equation of the form $\ddot{\mathbf{r}}+\omega^{2} \mathbf{r}=\mathbf{f}(t)$.
(c) Solve the above equation by using a particular function of the form $\mathbf{r}_{p}=\mathbf{c} t+\mathbf{d}$.
(d) Express the constants of integration in terms of the initial values $\mathbf{r}(0)$ and $\dot{\mathbf{r}}(0)$.
(e) Describe the curve $\mathbf{r}(t)=\mathbf{r}_{g}(t)+\mathbf{r}_{p}(t)$, where $\mathbf{r}_{g}(t)$ is the solution of the homogeneous equation $\ddot{\mathbf{r}}+\omega^{2} \mathbf{r}=0$.

P2.2 $[2+5=7$ points $]$
Use variational calculus to find
(a) The shortest connection between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the 2-dimensional Euclidean plane.
(b) The shape of a line of uniform mass density supported between $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ in a uniform gravitational field $\mathbf{g}=g \hat{\mathbf{e}}_{y}$.
$\underline{\text { P2.3 }}[2+3=5$ points]
If a conservative force field in 3-dimensional space is axially symmetric, and we choose the z axis of a cylindrical coordinate system $\{r, \phi, z\}$ along the axis of symmetry, then show that
(a) The corresponding potential has the form $U=U(r, z)$,
(b) The force always lies in a plane containing the z axis.
$\underline{\mathbf{P 2 . 4}}[3+4+3+5=15$ points $]$
A bead of mass m slides without friction in a uniform gravitational field of acceleration \mathbf{g} on a vertical circular hoop of radius R. The hoop is constrained to rotate at a fixed angular velocity Ω about its vertical diameter. Take the center of the hoop as the pole (origin) of a spherical polar coordinate system in which $\mathbf{r}=\{r, \theta, \phi\}$ represents the radius vector of the bead, with $\theta=0$ along the direction of gravity.
(a) Write down the Lagrangian $L(\theta, \dot{\theta})$.
(b) Find how the equilibrium values of θ depend on Ω. Which are stable and which are unstable?
(c) Find the frequencies of small vibrations about the stable equilibrium positions (hint: use the first term in a Taylor series expansion). What happens when $\Omega=\sqrt{\frac{g}{R}}$?
(d) Is

$$
\begin{equation*}
H \equiv \dot{\theta} \frac{\partial L}{\partial \dot{\theta}}-L \tag{2}
\end{equation*}
$$

conserved? Evaluate H, compare it to the energy $E \equiv T+V$, and comment on the result.
$\underline{\text { P2.5 }}[3+6+2=11$ points $]$
The Lagrangian for a particle of mass m and electric charge e moving in the $x y$ plane is given by

$$
L=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)+e E y-\frac{e B}{c} y \dot{x}
$$

This describes the motion of the particle in a uniform electric field E in the y direction and a uniform magnetic field B in the z direction. c is the speed of light.
(a) Write down the Euler-Lagrange equations.
(b) Find the Hamiltonian. Simplify the expression (eliminating \dot{x} by making use of a first integral of motion). What can you say about the general allowed motions in $y(t)$?
(c) At $t=0, x=y=0$. What critical value v_{c} must $\dot{x}(0)$ take in order for the particle to go in a uniform motion? What is the corresponding value of \dot{y} ? (You can either make use of the results in part (a) or that in part (b).)

