Assignment: HW1 [40 points]

Assigned: 2016/08/30 Due: 2016/09/06

<u>**P1.1**</u> [2+2+2=6 points]

Let G be a multiplicatively-written group with identity element e. Prove each of the following statements:

- (a) If $(x, y) \in G$ with either xy = e or yx = e, then $y = x^{-1}$.
- (b) $(x^{-1})^2 = (x^2)^{-1}$ for all $x \in G$.
- (c) $(xy)^{-1} = y^{-1}x^{-1}$ for all $(x, y) \in G$.

<u>P1.2</u> [2+2+2+2+2+2=12 points]

The simplest non-trivial cyclic group is called Z_2 . It has only two elements: e (the identity element), and a. The Cayley table for Z_2 is

$$\begin{array}{c|cc} e & a \\ \hline e & e & a \\ a & a & e \end{array}$$

The group $Z_2 \times Z_2$ is the smallest non-cyclic group. It has 4 elements and is called the *Klein four-group* or, simply, the *Klein group*, and is denoted by K_4 . All non-identity elements of the *Klein group* have order 2.¹

- (a) Write down the *Cayley table* for the cyclic group with 4 elements Z_4 .
- (b) Give an example representation of Z_4 .
- (c) What are the orders of the different elements of Z_4 ?
- (d) Write down the Cayley table for K_4 .
- (e) Give an example representation of K_4 .
- (f) Comment on the difference between K_4 and Z_4 .
- <u>**P1.3**</u> [4 points]

Let G be a multiplicatively-written group with identity element e. Show that G is Abelian if $x^2 = e$ for all $x \in G$.

<u>**P1.4**</u> [8 points]

Explicitly show all the identity and commutation relations of the *Pauli* matrices, the generators of the SU(2) group.

P1.5 [10 points]

Show that the Galilei transformations $g(\mathbf{R}(\psi, \hat{\mathbf{n}}), \mathbf{w}, \mathbf{a}, s)$,

$$\begin{pmatrix} \mathbf{r} \\ t \end{pmatrix} \xrightarrow{g} \begin{pmatrix} \mathbf{r}' = \mathbf{R}\mathbf{r} + \mathbf{w}t + \mathbf{a} \\ t' = \lambda t + s \end{pmatrix}, \tag{1}$$

with det $\mathbf{R} = +1$, $\lambda = +1$, form a group.²

¹The order of an element a of the group is the smallest integer m for which $a^m = 1$.

²This is the proper, orthochronous Galilei group $G_{+}^{\uparrow 4}$.