Assignment: HW1 [40 points]

Assigned: 2016/08/30
Due: 2016/09/06

P1.1 $[2+2+2=6$ points $]$
Let G be a multiplicatively-written group with identity element e. Prove each of the following statements:
(a) If $(x, y) \in G$ with either $x y=e$ or $y x=e$, then $y=x^{-1}$.
(b) $\left(x^{-1}\right)^{2}=\left(x^{2}\right)^{-1}$ for all $x \in G$.
(c) $(x y)^{-1}=y^{-1} x^{-1}$ for all $(x, y) \in G$.
$\underline{\text { P1.2 }}[2+2+2+2+2+2=12$ points $]$
The simplest non-trivial cyclic group is called Z_{2}. It has only two elements: e (the identity element), and a. The Cayley table for Z_{2} is

The group $Z_{2} \times Z_{2}$ is the smallest non-cyclic group. It has 4 elements and is called the Klein four-group or, simply, the Klein group, and is denoted by K_{4}. All non-identity elements of the Klein group have order $2 .{ }^{1}$
(a) Write down the Cayley table for the cyclic group with 4 elements Z_{4}.
(b) Give an example representation of Z_{4}.
(c) What are the orders of the different elements of Z_{4} ?
(d) Write down the Cayley table for K_{4}.
(e) Give an example representation of K_{4}.
(f) Comment on the difference between K_{4} and Z_{4}.

P1.3 [4 points]
Let G be a multiplicatively-written group with identity element e. Show that G is Abelian if $x^{2}=e$ for all $x \in G$.
$\underline{\text { P1.4 [8 points] }}$
Explicitly show all the identity and commutation relations of the Pauli matrices, the generators of the $S U(2)$ group.

P1.5 [10 points]
Show that the Galilei transformations $g(\mathbf{R}(\psi, \hat{\mathbf{n}}), \mathbf{w}, \mathbf{a}, s)$,

$$
\begin{equation*}
\binom{\mathbf{r}}{t} \xrightarrow{g}\binom{\mathbf{r}^{\prime}=\mathbf{R r}+\mathbf{w} t+\mathbf{a}}{t^{\prime}=\lambda t+s} \tag{1}
\end{equation*}
$$

with $\operatorname{det} \mathbf{R}=+1, \lambda=+1$, form a group. ${ }^{2}$

[^0]
[^0]: ${ }^{1}$ The order of an element a of the group is the smallest integer m for which $a^{m}=1$.
 ${ }^{2}$ This is the proper, orthochronous Galilei group $G_{+}^{\uparrow 4}$.

